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1 1 A RECURSIVE MAXIMUM LIKELIHOOD
DECODING

The Viterbi algorithm is indeed a very simple and efficient method of imple-
menting the maximum likelihood decoding. However, if we take advantage
of the structural properties in a trellis section, other efficient trellis-based de-
coding algorithms can be devised. Recently, an efficient trellis-based recur-
sive maximum likelihood decoding (RMLD) algorithm for linear block
codes has been proposed [37). This algorithm is more efficient than the con-
ventional Viterbi algorithm in both computation and hardware requirements.
Most importantly, the implementation of this algorithm does not require the
construction of the entire code trellis, only some special one-section trellises
of relatively small state and branch complexities are needed for constructing
path (or branch) metric tables recursively. At the end, there is only one table
which contains only the most likely codeword and its metric for a given received
sequence T = (r1,72,...,7n). This algorithm basically uses the divide and
conquer strategy. Furthermore, it aliows parallel/pipeline processing of
received sequences to speed up decoding.
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196  TRELLISES AND TRELLIS-BASED DECODING Al GORITHMS FOR LINEAR BLOCK CODES
11.1 BASIC CONCEPTS

Consider a binary (N, K) linear block code C. Suppose a codeword is transmit-
ted and r = (ry,rs,...,rN) is the received vector at the output of the matched
filter of the receiver.

Let T be the minimal trellis diagram for C. Consider the trellis section from
time-z to time-y. As shown in Section 6.2, a composite branch between two
adjacent states in this trellis section is a coset in p.y(C)/Cy,, and a com-
posite branch may appear many times as shown in (6.13). Using this fact, we
can reduce the decoding complexity by just processing the distinct composite
branches in each trellis section. To achieve this, we form a table for the met-
rics of composite branches, which for each coset L in p, ,(C)/C}',, stores the
largest metric D, denoted m(D), and the label for the branch with the largest
metric, denoted {(D). This table is called the composite branch metric ta-
ble, denoted CBT,,,, for the trellis section betwezn time-z and time-y. Since
the set of cosets po ¥(C)/Cy'y = C/C consists of C only, the table CBTy
contains only the codeword in C that has the largest metric. This is the most
likely codeword. The RMLD algorithm is simply an algorithm to construct a
composite branch metric table recursively from tables for trellis sections of
shorter lengths to reduce computational complexity. When the table CBTy
is constructed, the decoding is completed and CBTy y contains the decoded
codeword.

A straightforward method to construct the tabie CBT, , is to compute the
metrics of all the vectors in the punctured code p. ,(C), and then find the
vector with the largest metric for every coset in p.,(C)/C;, by comparing
the metrics of vectors in the coset. This method is efficient only when y — z
is small and should only be used at the bottom: (or the beginning) of the
recursive construction procedure. When y — z is large, CBT; , is constructed
from CBT,.; and CBT, , for a properly chosen irteger z with z < z < y.

Therefore, the key part of the RMLD algorithm is to construct the metric
table CBT. , from tables CBT, ; and CBT, . Firit we must show that this can
be done. For two adjacent states, o, and g, with r, € £;(C)and o, € £,(C),
let

T.(0z,0,) = {1, 6P, o)} (11.1)
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Figure 11.1.  Connection between two states.

denote the subset of states in £.(C) through which the paths in L(oz,0y)

connect o, to oy as shown in Figure 11.1. Then
L(oz,04) = U L(a,,af’) o L(c!?,0,). (11.2)
U[Ji)ezx(”xv”y)

It follows from (11.2) and the definitions of metric and label of a coset (or a

composite branch) that we have

m(Lno)) 8, max {m(Lonal)+mLee))}  (13)

and
l(L(oz,0y)) = I(L(a,,af,i"“‘))) o l(L(a(,i"‘),ay)), (11.4)

where iax is the index for which the sum in (11.3) takes its maximum.
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Note that the metrics, m(L(a,,agi))) and m(L(agi),a,)), and labels,
I(L(a,,agi))) and | (L(aﬁi),a,,)), are stored in the composite branch metric ta-
bles CBT.,, and CBT,,. The state set I,(0;,0,) can be determined from
the code trellis. Therefore, (11.3) and (11.4) show that the composite branch
metric table CBT. , can be constructed from CBT.,; and CBT, ,.

Based on the structural properties of a sectionalized trellis, we can readily
show that

b= |Ta(00,0,)| = 2HCe ) =KCe)=k(Cury) (11.5)

This says that if we compute the metric m(L(c -, o,)) from (11.3) using tables,
CBT., and CBT,,, we need to perform |Z,(o.,0y)| additions and
|Z:(0z,0y)| — 1 comparisons. However, if we compute the metric m(L(o;,0y))
directly from the parallel branches in L(02,0,), we need to compute |[C¥, | =
2¥(Cs.4) branch metrics and perform 2¥(€=») — 1 cemparisons. For large y — =,
|C§"y| is much larger than |Z,(o;,0y)| and hence constructing the metric ta-
ble CBT, , from tables, CBT; . and CBT, ,, requires much less additions and
comparisons than the direct construction of CBT; ,, from vectors in p, ,(C) and
cosets in p;.,(C)/C}",. Therefore, recursive construction of composite branch
metric tables for trellis sections of longer lengths from tables for trellis sections

of shorter lengths reduces decoding computational complexity.

11.2 THE GENERAL ALGORITHM

Now we describe the general framework of the RMLD algorithm for construct-
ing the composite branch metric table CBT., “or decoding a received se-
quence 7. We denote this algorithm with RMLD(z,y). This algorithm uses
two procedures, denoted MakeCBT(z,y) and CcmbCBT(z,y; z), which are
defined as follows:

® MakeCBT(z,y): construct the table CBT; , di ectly as described later.

8 CombCBT(z,y; z): Given tables CBT; . and (BT, , as inputs, where z <
z < y, combine these tables to form CBT; y as shown in (11.3) and (11.4).

The procedure CombCBT(z,y; z) can be expressed as

CombCBT(RMLD(z, z), RML D(z,y))
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[ CombCBT(0, Ni11) |

[COmbcaT(o. 213 22) | [CombCBT (21, N; )|

[CombCBT(O, 22;24) | T [CombCBT (23, N; 23) |

~

|Makec3'r(o,z.)] WakeCBT(z.,zg)] [CombCBT(z,,z:,;zc)I [MakeCBT (25, N) |

[CombCBT (23, 261 27)

.

[MakeCBT(z;, z7)] ICombCBT(z-r, zc;z.ﬂ

S~

- ~
. -~
- -

Figure 11.2.  lllustration of the recursion process of the RMLD algorithm.

to show its recursive nature.

[Algorithm RMLD(z,y)]
Construct CBT. , using the least complex of the following two options:

(1) Execute MakeCBT(z,y), or

(2) Execute CombCBT(RMLD(z, z), RMLD(z,y)), where z withz < z <y
is selected to minimize computational complexity.

Decoding is accomplished by executing RMLD(0, N). The recursion process
is depicted in Figure 11.2. We see that the RMLD algorithm allows paral-
lel/pipeline processing of received words. This speeds up the decoding process.

The MakeCBT(z,y) procedure is efficient only when y—z is small and should
only be used at the bottom (or the beginning) of the recursive construction
procedure. When y—z is large, CBT. , is constructed from CBT. . and CBT.,,
for a properly chosen z with z < z < y. At the bottom of the recursion process,
y — z is small and the computation done by the MakeCBT procedure during
the entire decoding process is also small. Therefore, the major computation is
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carried out by the CombCBT procedure. Hence, the CombCBT procedure is
the major procedure in the RMLD algorithm and should be devised to reduce
either the total number of computations for software implementation or the
circuit requirement and chip size for IC implementation.

In a soft-decision decoding algorithm, addition and comparison operations
for metrics are considered as the basic operations. An addition operation and
a comparison operation are in general assumed to have equal weight (or cost).

Let ¥ (z,y) and Pc(z,y; z) denote the number of basic operations required
to execute the procedure MakeCBT(z,y) and the procedure CombCBT(z, y; z),
respectively. The values of Yu(z,y) and ¥c(z,y; z) depend on the imple-
mentation of the RMLD algorithm. Assume that the formulas for ¥um(z,y)
and Yc(z,y; 2) are given. To minimize the overall decoding complexity of the
RMLD algorithm, sectionalization of a trellis (choices of z) must be done prop-
erly. A sectionalization which gives the smallest overall decoding complexity
for given Y (z,y) and Ye(z,y; 2) is called the optimum sectionalization
for the code.

Let ¥min(z,y) denote the smallest number of operations required to con-
struct the table CBT, . Then it follows from the algorithm RMLD(z,y) given
above that

wu(z,v), ifz+l=y,
Yumin(T,y) 2 hin {d’M(m,y)» zr(nzirg' (¥ Rania (T, 43 z)}} , otherwise,
’ (11.6)
where
PRmin(T ¥: 2) 2 Ymin(2,2) + Pmialz,¥) + e (2,4 2). (11.7)

The total number of operations required to decode a received word is given by
l/)m'm(o, N)

By using (11.6) and (11.7) together with formulas for Yu(z,y) and Ye(z, y; 2),
we can compute Ymin(z,y) for every (z,y) with0 <z <y < N efficiently in
the following way: The values of Ymin{z,z+1) for0 <z < N are computed
using the given formula for Y (z,y). For an integeri with0 <z <z +i < N,
Ymin(Z,z +1) can be computed from Ymin(z',y') with y' — 2’ < i and the given
formulas for ¥ (z,y) and Yc(z,y; z). By keeping track of the values of z se-
lected in the above procedure, it is easy to find an optimum sectionalization.
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If Ym(z,y) and c(z,y; 2) are independent of the received sequence r for any
0<z<y<Nandz < z<y,then the optimum sectionalization can be fixed.

11.3 DIRECT METHODS FOR CONSTRUCTING COMPOSITE
BRANCH METRIC TABLES

For two integers z and y such that 0 € z < y € N, a straightforward way to
construct the composite branch metric table CBT. , directly is to compute the
metrics of all the vectors in the punctured code p; ,(C) independently, and then
find the vector (branch) with the largest metric for every coset in p.,(C)/C}',
by comparing the metrics of vectors in the coset. Each surviving vector and
its metric are stored in the table CBT, ,. Let MakeCBT-I(z,y) denote this
procedure.

The number of addition-equivalent operations required to construct the table
CBT.,, by executing MakeCBT-I(z, y), denoted zbg?(z,y), is given as follows:

W (2,y) = (y — 2 — 1)250eEN | gklpe @D -KCe)(gHCe) _ 1) (11.8)

The first term is the number of additions to compute all the metrics for the
vectors in p;.,(C), and the second term is the number of comparisons for finding
the vectors with the largest metrics by comparing the metrics of vectors in each
coset in p; ,(C)/CY,.

A more efficient method for constructing the table CBT; , is to compute
the metrics of the 2¥~% branch labels following the order of the Gray code as
proposed in [60, 102]. Let MakeCBT-G(z,y) denote this procedure, where
G stands for Gray code. Assume that the bit metric satisfies the following
condition: M(r,0) = —M(r,1), where r is a received symbol. This condition
holds for the AWGN channel with BPSK transinission and M(r,1) £ r. We
also assume that the all-one vector of length y — ¢, denoted 1, _,, is in p, ,,(C)
for any z and y with 0 < z < y £ N. In thi: case, the metrics of 2v-="!
labels are computed first in the order of the Gray code, and then the remaining
metrics are computed by negating the first 2Y~2"! metrics. If 1,_, € C;”y, for
any vector in a coset of C},, the complementary vector is in the same coset.
In this case, we can simply discard the branches ‘ith negative metrics [60, 102]

for finding the largest metric in each coset.
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Let 1{1‘(5) (z,y) denote the values of ¥ (z,y) using the MakeCBT-G(z,y).
Assume that the negation is costless. Then,
2v=z=1 4y g — 2 4 2K(Pes(C)-k(Ca,p)(QH(Cuin) -1 _ 1),
if1,_.eCy,,

i (2.9) =
M5 QU-2-1 4y _ g _ 2 4 2k(Pes(C))=k(Cuy) (2H(Cus) _ 1),

otherwise.

(11.9)
For small y — z, the dimension of p;,,(C) is close to y — . The computational
complexities of both MakeCBT-I and MakeCBT-G procedures are small for
small y — z. The RMLD algorithm with the MakeCBT-G procedure requires
slightly less computational complexity than that with the MakeCBT-I proce-
dure; however, the MakeCBT-I procedure is simpler for IC implementation.
Using the MakeCBT-G procedure, the metrics of the first 2¥~*~! labels in
pz.y(C) must be computed serially, however with the MakeCBT-I procedure,
the metrics for all the labels in p;,(C) can be computed independently in
parallel.

11.4 THE COMBCBT PROCEDURE

The CombCBT(z,y; z) procedure simply performs the computation of (11.3)
and finds the label of (11.4). It is important to note that in the construction
of the metric table CBT, ,, we do not need to compute the metric

m(oz,0y) & m(L(Uz’Uy))

for every adjacent state pair (0,,0,). We only need to compute m(o.,0,) for
those adjacent state pairs for which the paths between each state pair form
a distinct coset in p; y(C)/C;",. Therefore, we only compute the metrics for
2k(p=4(C))=k(Cs.y) distinct adjacent state pairs between time-z and time-y. This
is the key to reduce computational complexity.

In principle we can construct the metric table CBT: , using the section of
the code trellis T from time-z to time-y as follows:

(i) For each coset D € p; (C)/CY,, identify a state pair (02,0, ) such that
L(o;,0y) = D;

(i) Determine the state set &.(0.,0y); and
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(iii) Compute the metric m(cz,0y) and the label l(0¢,0y) from (11.3) and
(11.4), respectively.

However for long codes, it is a big effort to construct the large trellis section from
time-z to time-y and execute the above steps (i) to (iii). The total number of
composite branches in the trellis section between time-z and time-y can be very
large and the number of distinct composite branches is only a small fraction.
Examining this trellis section can be very time ccnsuming and effort wasting.
Consequently, implementation will be complex and costly.

To overcome the complexity problem and facilitate the computation of (11.3),
we construct a much simpler special two-section trellis for the punctured code
pz.y(C) with section boundary locations in {z,z,1} and multiple “final” states
at time-y, one for each coset in p;,(C)/CY,. This special two-section trellis
contains only the needed information for constructing the metric table CBT.,,
from CBT,, and CBT,, (no redundancy). For a coset Dy € p;4(C)/C7,,
define

5.(D,) £ {D. € p..(C)/C¥,: D: Cp=x(D)}, (11.10)

where p, .(D,) is the truncation of the coset D,, from time-z to time-z. For each
D, € S.(D,), there is exactly one coset in p24(C)/CY,, denoted adj(D., D),
such that D, o adj(D., Dy) C D, (see Figure 11.). Then,

D,= |J D:.oadj(D:,Dy). (11.11)
D.€S,(Dy)

From (11.11) we see that the metric of Dy czn be computed from metrics
of cosets in p,.(C)/CY, and cosets in p.,(C),C}, (or from tables CBT. .
and CBT,,) once the set S;(D,) and adj(D.,L ) for each D. € S.(D,) are
identified. The special two-section trellis to be ccnstructed is simply to display
the relationship given by (11.11) and identify the set S,(D,) for each coset
D, e PZ.y(C)/C::r.y'

Let £, and I, denote the state spaces of the special two-section trellis for
pz.y(C) at time-z and time-y, respectively. To aciieve the purpose as described
above, the special two-section trellis for p. ,(C) nust have the following struc-

tural properties:

(1) There is an initial state, denoted o, o at “ime-z.
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(2) There is a one-to-one correspondence between the states in the state

space T, and the cosets in p..(C)/C;,. Let D, denote a coset in
Pz,:(C)/C¥, and o(D,) denote its corresponding state at time-z. Then

the composite branch label between 0,9 and ¢(D;) is L(0:0,9(D;)) =
D..

There is a one-to-one correspondence between the states in the state
space T, and the cosets p. (C)/Cy',. Let D, denote a coset in pz.y(C)/
CY, and o(D,) denote its corresponding state at time-y. For any state
o(D,) € T,, L(¢(D.),o(D,)) = adj(D.,D,) if D, € S:(D,). Other-
wise, L(o(D,),0(Dy)) = 0.

From the structural properties of the above special two-section trellis, we see
that: (1) For every state o(D;) € I, its (state) metric m(D,) is given in the
table CBT, ,; and (2) For each composite branch between a state (D) at
time-z and an adjacent state o(D,) at time-y, its composite branch metric,
m(a(D.),o(D,)), is given in the table CBT,,,.

It follows from (11.11) and the structural properties of the above special

two-section trellis for p, ,(C) that for each coset Dy € p; ,(C)/C;’,, the metric
m(D,) is given by
m(D,) = max_ {m(D.)+m(c(D.),c(Dy))}, (11.12)

D.€5.(Dy)

where the set of states correspond to S,(D,) and the state pairs (¢(D;),o(Dy))

can be easily identified from the special two-section trellis. Eq.(11.12) is simply

equivalent to (11.3). Therefore, CombCBT(z, y; z) will be designed to compute

the metrics for the table CBT, , based on (11.12) using the special two-section

trellis. In general, this special trellis is much simpler than the section of the

entire code trellis T from time-z to time-y except for the cases where z =0 or

y = N, and is much easier to construct. As a result, the construction of the

metric table CBT, , is much simpler.

The construction of the above special two-section trellis for p; ,(C) is done

as follows: Choose a basis {vy,v2,... ,vk(,,m(c))} of pz(C) such that the first
k(CY,) = k(C.y) vectors form a basis of C77,. Define

Ney 2 y—z 4 k(pzy(C)) — k(Czy). (11.13)
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Let G(z,y) be the following k(p: ,(C)) x n.,, matrix:

. v 1
(
Vk(C,.,)
Gzy)=|  ——--=- '
Vi(C,,,)+1
. I
L Yi(p, ,(C)) d

where O denotes the k(C; ) x (k(pzy(C)) — k(C.,y)) all-zero matrix, and I
denotes the identity matrix of dimension (k(p,(C)) — k(C:,)). Let C(z,y)
be the binary linear code of length n. , generated by G(z,y). Construct a 3-
section trellis diagram T'({z, z,y, 2 + nzy}) for C(r,y) with section boundaries
at times z, z, y and = + n;, as shown in Figure 11.3. Then the first two
sections of T'({z,2,y,z + n,.,}) give the desired special two-section trellis for
computing (11.12).

In fact from (11.12) and the properties of the special two-section trellis for
Pz.y(C), we only need the second section of T'({z. z,y,z + n.,,}) to construct
the table CBT.,. For convenience, we denote tlis special one-section trellis
with T;(z,y). Table CBT; . gives the state metr:cs of T;(z,y) at time-z and
Table CBT., , gives the composite branch metrics of T.(z,y) between time-z
and time-y. Therefore, the implementation of the RMLD algorithm does not
require the construction of the code trellis T for the entire code C, it only
requires the construction of the special one-sectior trellises, one for each recur-
sion step. Each of these special one-section trellises has the minimum (state
and branch) complexity for constructing a compos te branch metric table using
the CombCBT procedure. This reduces decoding complexity considerably.

Example 11.1 Consider the RM code C = RM; 4 given in Example 6.3. Let
z =4,y =12, and z = 8. Then, p,; ,(C) = RM, 3, C, = RM, ;, Cy, =

z.y
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zk(pl.l(c))—h(cl.l)
states

initial state

0z 0 ::Q

2"(P:..(c)) —k(C,.,)
states

\__ a coset of C, in p.(C)

a coset of C¥, in p. :(C)

27:(Cs.0) states
in Z,(c(Dy))

Figure 11.3.  Structure of the treliis diagram T'({z,z,y,z + Nzy})-

Cy, =RMp2, and npy = 11. C(z,y) is the (11,9) code generated by

[1 1111111 0 0 0]
01010101 000
00110011 000
000061111 000
G(z,y) =
0 0 0 1 0 0 0
0 0 00 10 010
(00000011 0 0 1|

It can be put in trellis oriented form by simple row operations. The one-section
minimal trellis diagram, T4(8,12), consists of two 4-state parallel components.
One of the components is depicted in Figure 11.4. The other can be obtained
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time z=8 time y=12

| !

a(DM) o(Dy")
o(D{) a(Dy”)
(DY) o(D;”)
U(DS‘)) U(D!(/“)

P, £ {0000,1111}, P, £ {001 ., 1100}
P; £ {0101,1010}, P, £ {011),1001}

Figure 11.4. A parallel component of T4(8, 12) for the RM3 4 code.

by adding (0,0,0,1) to each branch label.
JAWAN

From (11.12), we see that the computation ¢f the composite branch met-
ric m(D,) depends on the size of the set S (I),). Since for a coset D, €
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p,‘y(C)/C:"y, the truncation p, :(Dy) is a union of cosets in p,,,(C)/C;",, it
follows from property (3) of the special two-section trellis that for every state
o(D,) € L, the number of composite branches merging into the state o(D,)

18

|Dy| (58]
S.(D)| = = '
15:()l = BITLE(D) e (D) - [Cu.-[Coi]
= 2'¢(C¢..)"k(cl.-)‘k(ct.v), (11'14)

which is exactly the same as (11.5). From (11.14), we can readily determine
the number of computation operations required to compute m(Dy).

Next we need to devise efficient methods to solve (11.12) using the one-
section trellis T:(z,y) so that either the computational complexity of the
CombCBT procedure is reduced or the circuit requirement and chip size of
IC implementation of the CombCBT procedure are reduced. Two methods
for solving (11.12) will be presented in the next two sections and they re-
sult in two specific CombCBT procedures, named the CombCBT-V and the
CombCBT-U procedures.

11.5 COMBCBT-V(X,Y;Z) PROCEDURE

A straightforward procedure to solve (11.12) based on the one-section trel-
lis T-(z,y) is to apply the conventional add-compare-select (ACS) procedure
that is used in the conventional Viterbi algorithm. For each coset D, in
Pzy(C)/CY,, the metric sum, m(D.) + m(o(D.),o(Dy)), is computed for ev-
ery state o(D.) with D, € S,(D,), and m(D,) is found by comparing all
the computed metric sums. This procedure is called the CombCBT-V(z,y; z)
procedure, where V stands for Viterbi algorithm.

Since the Viterbi algorithm is applied to a one-section trellis diagram to
construct a composite branch metric table from two smaller tables, the IC
implementation of the CombCBT-V procedure is quite simple and straightfor-
ward.

Let ¢(CV)(z, y; z) denote the value of Yc(z,y; z) for the CombCBT-V(z, y; z)
procedure.  Note that the number of states at time-y in T:(z,y) is
ok(pey(CN)-k(Cew)  and for each state g(D,) at time-y, the number of states
o(D,) at time-z in T¢(z,y) which are adjacent to o(D,) is given by (11.14).
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Let
Pl(Ct‘V) = k(cz.v) - k(cz.z) - k(cz.y)- (11.15)

Then, the total number of additions and that of comparisons executed by the
CombCBT-V(z,y; z) procedure are

2k(ﬂ,.,(C))—k(C..,)ﬁ-p,(C,',) and 2k(Pz..(C)J-k(C:..)(2P:(C:.y) - 1))

respectively. Consequently, the computational corplexity of the CombCBT-V(z,
y; z) procedure is given by

‘J’(CV)(I' y; z) —_ 2k(p,.’(C))-k(c.")(zﬂ,(c...)‘Fl — 1). (1116)

11.6 RMLD-(1,V) AND RMLD-(G,V) ALGORITHMS

Combining the CombCBT-V procedure with either the MakeCBT-I proce-
dure or the MakeCBT-G procedure, we obtain two specific RMLD algorithms,
denoted RMLD-(I,V) and RMLD-(G,V). From (11.6), (11.7), (11.8) and
(11.16), we can compute the total number of addition-equivalent operations
required by the RMLD-(I,V) algorithm for decoding a received word. The com-
putational complexity of the RMLD-(G,V) algcrithm can be computed from
(11.6), (11.7), (11.9) and (11.16).

For either the RMLD-(I,V) algorithm or the RMLD-(G,V) algorithm, we
need to know for what value of y — z that the CombCBT-V procedure should
be executed to construct the table CBT.,. This is answered by the following
two theorems. We simply state the theorems here without the proofs which
can be found in [111].

Theorem 11.1 Consider a binary linear code C of length N such that the
minimum Hamming distances of C and its dual code are both greater than

one.

(i) Ify-—z > 2, then for any 2 with z < z < y, the CombCBT-V(z,y; 2)
procedure requires less computation to form the metric table CBT.
than the MakeCBT-I(z,y) procedure. If y — = = 2, the complexities of
CombCBT-V(z,y; z + 1) and that of M: keCBT-I(z,y) are the same.
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(i) Ify—z> 2 k(pzy(C)) =y—zand Cyy = {Oy-z, (L, *,...,%,1)}, where
0, - denotes the all-zero vector of length y—z and (1,*,...,%,1) denotes
a vector of length y — z such that the first and the last components
are 1, then the right-hand side of (11.6) takes its minimum for both
2= (s +)/2] and z = [(z +3)/2]. s

Theorem 11.1 simply says that for y — z > 2, procedure CombCBT-V(z,y; z)
should be used to construct the metric table CBT; , in the RMLD-(I,V) algo-
rithm.

Theorem 11.2 Consider a binary linear code C of length N such that the
minimum Hamming distance of C and its dual code are both greater than one.
For the RMLD-(G,V) algorithm,

(i) If k(p:y(C)) =y—zand C}, = {0} or {0y_..(1,%,...,%,1)}, then
the MakeCBT-G(z,y) procedure requires less computation than the
CBT(z,y; z) procedure for any z with z < z <y to form the metric
table CBT,, fory—z > 2 Wheny—-z = 2, they are the same.

(ii) If the conditions of (i) do not hold, then the CombCBT-V(z,y;z) pro-
cedure with some z is more efficient than the MakeCBT-G(z,y) for
constructing the metric table CBT,, fory —z > 2. Moreover, if
k(p:4(C)) < y — = and C,, = {0} or {0y—z,(1,%,...,%,1)}, then the
right-hand side of (11.6) takes its minimum for both z = Lz + v)/2]
and z = [(z +y)/2]. an

Since the Viterbi algorithm is applied to a one-section trellis diagram to
construct a composite branch metric table from two smaller tables, the IC im-
plementations of both the RMLD-(1,V) and RMLD-(G,V) algorithms are quite
simple and straightforward. For high speed decoders, the MakeCBT-I proce-
dure is more suitable than the MakeCBT-G procedure, since branch metrics
can be computed in parallel. As shown in Theorem 11.1, in the optimum sec-
tionalization, the value of y — z for the MakeCBT-I procedure to be executed
can be kept equal to 2, but this is not necessarily the case for the MakeCBT-G
procedure (see Theorem 11.2). Hence, IC implementation of the MakeCBT-I
procedure is easier. Furthermore, with the MakeCBT-G procedure, the metrics

must be computed serially.
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1.7 COMBCBT-U(X,Y;Z) PROCEDURE

This procedure is based on the decomposition of she one-section trellis T, (2, y)
into simple uniform subtrellises as described in Section 6.4. The one-section
trellis T, (z,y) may consist of parallel isomorphiz components. These parallel
components can be partitioned into groups of the same size in such a way that:
(1) two parallel components in the same group are identical up to path labeling;
and (2) two parallel components in two different groups do not have any path
label in common [44]. Each group consists of 2* identical paralle] components,
where A can be computed from (6.36) with C(z,y) as the code.

Furthermore, each parallel component of T,(z,y) can be decomposed into
subtrellises with simple uniform structures as shown in Figure 11.5 by applying
Theorem 3 of [44] (also see Section 6.3) to the code C(z,y) that was used for
constructing the one-section trellis T;(z,y). Consider a parallel component A.
The state spaces at the two ends of the parallel component can be partitioned
into blocks of the same size 2, called left U-blocks and right U-blocks,
respectively, where v can be computed from (6.41) with C replaced by C(z, y).

A pair of a left U-block and a right U-block is called a U-block pair, and
each U-block pair (B,, B,) has the following uniform structure, denoted U:
For any two states 0y, and o, in By,

{L(¢:0,): 0. € B.} = {L(0.,0,):0. € B.}. (11.17)

The above property simply says that for a U-tlock pair (B,, By), the set of
composite branches from the states in the left U-block B, to any state in the
right U-block B, is the same. This property can be used in solving (11.12)
to reduce the computational complexity. The label set of composite branches
defined by (11.17) is called the composite branch label set of the U-block
pair (B;, B,). Two different U-block pairs have mutually disjoint composite
branch label sets.

The CombCBT-U(z,y; z) procedure is devised based on the uniform struc-
ture of a U-block pair. In contrast to the CoribCBT-V(z,y; z) which solves
(11.12) independently for every state o(D,. with D, € p.,(C)/C;,,
CombCBT-U(z, y; z) solves (11.12) simultaneously for each U-block pair (B;,
B,) of a parallel component of T.(z,y) by taking into account of the uniform
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A U-block pair and
branches between them

A left A right
U-block U-block
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(2¥ states.
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\_

Time 2 y

Figure 11.5. The left U-blocks and right U-blocks of a parallel component in T:(z,v).
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property U given by (11.17). For a parallel compcnent A of T, (z,y), let LU(A)
denote the set of left U-blocks in A. Based on (11.17), (11.12) can be put in
the following form: For a state o(D,) in a right U-block B,,

>

mp, (Dy) D.E{ij},%.)EB_}{m(Dz) +m(a(D:),o(Dy))}, for B. € LU(A),
(11.18)
m(Dy) = max mp,(D,). (11.19)

B,€LU(A)

Equations (11.18) and (11.19) show that (11.12) can be solved simultaneously
for each U-block pair. This allows parallel processing to speed up the compu-
tation. In fact the computations of (11.18) and (11.19) can be carried out for
all the parallel components of T;(z,y) in parallel.

For easy understanding, an example is used tc explain how to solve (11.18)
for each U-block pair (B;, By).

Example 11.2 Again consider the RM code C = RM;4. As shown in Ex-
ample 11.1, the one-section trellis diagram T.(z,y) with z = 4, y = 12 and
z = 8 consists of two four-state parallel compon=nts. From (6.36) and (6.41),
we find that A = 0 and v = 2. Therefore, the two paralle] components are not
identical, and each consists of only one left U-bleck and one right U-block. As
shown in Figure 11.4, the four end states of one oarallel component at time-8,
denoted a(Dgl)), a(D?), a(Dgs)), o(D™), form: a single left U-block, and the
4 end states at time-12, denoted a'(D,(,”), a(Diz)), a(D), a(D,(,“), form a
single right U-block. There are four different composite branch labels between
them, denoted

P, 2 {0000,1111}, P, £ {0011,1100},
P; 2 {0101,1010}, P42 {0.10,1001}.

The set of the composite branch labels merging iato any state a(DLj)) at time-
12 is {P1,P2,P3,P4}.
From (11.18) and (11.19), the largest metric, denoted m(DLJ)), for the coset
DY with 1 < j < 4 is given by
m(DLJ)) = max {m(D‘z’)) + 1'7,(Pb(."j))}, (11.20)

1<i<4
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where b(i, j) is the unique integer such that L(a(Dgi)).a(D(,j ))) = Py j)-
To compute the metrics m(Df,’)) for 1 < j < 4, form the following set of
metric sums:

M2 {mDP)+m(P):1<i<4,1<b<4)

Each sum in M is associated with a path in the trellis of Figure 11.4. Clearly
the largest sum in M corresponds to the survivor path for the associated state
a(Dg,")) at time-y., i.e., m(D(y")) is equal to the largest sum in M. Thus this
value for the coset Dsﬂ) is entered in Table CBT,,. This can be proceeded by
examining the second, third, ... largest sum in M. If the j-th largest sum M;
corresponds to state a(Dg,q')), and CBT, , contains no entry for the coset DS"'),
then M; is entered in CBT; . This process continues until CBT, , contains
entries for each ng ),

Similarly, the metrics of cosets that correspond to the four states at time-
12 in the other parallel component in the one-section trellis T:(z,y) can be
computed. This completes the construction of table CBT..,-

We can find the j-th largest sum of M more efficiently by pre-sorting

{m(D"):1<i<4} and {m(R):1<b< 4}.
FaVAN

In general, for a U-block pair (B;,B,) with B, = {o( g”),a(D(,z)),...,
o(D¥N)Y, By = {a(D.f,”),a'(D,(,z)),... ,a(D{*)}, and the composite branch
label set of (B.,B,), {P1,Pz,..., P2r}, (11.18) is solved in the following way:

(S1) Sort m(D{M), m(Dgz)), cen m(D(zzv)) in the decreasing order.
(S2) Sort m(P), m(Pz), ..., m(Py+) in the decreasing order.

(S3) Form M £ {m(Df)) +m(P): 1 <i<2%1 <b< 2"} Determine
mBI(Dy)) with 1 < j < 2" as described in Example 11.2 by using the
following partial ordering on M:

m(DP) +m(P) > m(D{) +m(Py),
if m(D) > m(D{") and m(P,) 2 m(Py).
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Clearly the above procedure for a U-block pair can be executed for all the
U-block pairs in all the distinct parallel components in the one-section trellis
T.(z,y) simultaneously.

Note that the CombCBT-U(z, y; z) procedure is identical to the CombCBT-
V(z,y; z) procedure only for the case of v = 0 (the trivial case in which each
left U-block and right U-block consist of a single state).

Let ¢£:U)(z,y;z) denote the number of addition-equivalent operations of
CombCBT-U(z,y;z). The computational complexity for solving (11.18) de-
pends on the received sequence. In the following, an upper bound on tp(cv)(:c, v; 2)
for the worst case is given, which is independent of the received sequence. With-
out derivation, the bound is given below {37):

1/’2:”)(3’!/} Z) S (21:(]',,;(C))—’5(C:.1)—V + 2k‘ﬂt.y(c))"k(cs.y)‘V)n(z"’)
1
k z. C) -k Cl. ) _— 1] Cl. -—
+2HPeAONHC (14 )2 (Ced - 1) (11.21)

where

v, for v =10,1
2) = ' Y 11.22
n(2) { 2(v—1)(2* = 1) — 1, otherwise. ( )

Let 12)(CU) (z,y; z) denote the upper bound given by .he right-hand side of (11.21).

It can be shown that [37]
Q)(:)(x,y; 2) < w(cv)(z,y;z). (11.23)
The inequality of (11.23) holds for v > 2. As v becomes large, the ratio
be (z.y:2)/98 (=4 2)

decreases rapidly. This says that the CombCBT-U procedure is more efficient
than the CombCBT-V procedure computation-w se.

11.8 RMLD-(G,U) ALGORITHM

The CombCBT-U procedure can be combined with either the MakeCBT-I pro-
cedure or the MakeCBT-G procedure to form spe:ific RMLD algorithms. Since
the MakeCBT-G procedure requires less compu.ational complexity than the
MakeCBT-I procedure. The MakeCBT-G proc:dure and CombCBT-U pro-
cedure are combined to form an RMLD algorit im, called the RMLD-(G,U)
algorithm.
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Table 11.1. Numbers of addition-equivalent operations with various maximum likelihood
decoding algorithms for some RM and extended BCH codes of length 64.

RMLD-(G,U){Lafourcade|
Code, (Basis) 64-section |RMLD-(I,V)|RMLD-(G,V}{ upper bound| & Vardy

Poin (60]
RM3 ¢(64,22) 425,209 78,209 77,896 66,824 101,786
RM; ¢(64,42) 773,881 326,017 323,759 210,671 538,799
RM, ¢(64,57) 7,529 5,281 4,999 4,087 6,507
EBCH(64,10), (C) 20,073 3,201 3,108 3,108 4,074
EBCH(64,16), (B)] 764,153 120,193 119,880 96,840{ 148,566
EBCH(64,18), (B)| 2,865,401 468, 040 468,040 372,808{ 509,120
EBCH(64,24), (B)| 1,327,353 271,745 271,432 171,823] 316,608

EBCH(64, 30), (C)|35,028,985| 16,091,009 16,056,668 9,408,567/16,598,063
EBCH(64,36), (C)[18,710,521] 9,995,617] 9,961,580 7,684,276{12,829,263
EBCH(64, 39), (C)[38,436,857] 24,741,161] 24,707,149 19,841,161[30,982,731
EBCH(64,45), (C)] 1,082,105} 893,489 891,695 665,713 891,819
EBCH(64,51), (A)] 418,553| 312,721 312,382 257,300] 393,528

From (11.6), (11.7), (11.9) and (11.21), we can compute an upper bound,
denoted ¢inc‘?:;lu), on the worst-case computational complexity of the RMLD-
(G,U) algorithm for decoding a received word.

11.9 COMPARISONS

Among the three specific RMLD algorithms, RMLD-(LV}, RMLD-(G,V) and
RMLD-(G,U), the RMLD-(G,U) algorithm is the most efficient one computation-
wise, while the RMLD-(I,V) algorithm is the simplest for IC implementation.

In the following, the three specific RMLD algorithms are applied to some well
known codes of length 64 to show their effectiveness in terms of computational
complexity.

Let EBCH(64, k) denote the extended code obtained from the binary prim-
itive (63,k) BCH code by adding an overall parity bit. The computational
complexities of decoding the RM, s codes with 2 < r < 4 and the permuted
EBCH(64, k) codes with 10 < k < 51 are computed based on certain symbol
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position permutations and given in Table 11.1. Hereafter, RM,.,, is denoted
RM, m(2™, ¥ 7_(7)) to show the number of information bits explicitly.

To reduce the state complexities of the trellis diagrams for EBCH(64, k)
codes, the order of symbol positions must be permuted. For the RM codes, the
natural symbol ordering is optimal for the state complexity [45]. For the EBCH
codes, consider the following permutations 7 [46]. Let a be a primitive element
of GF(2°) and {f1,...,Bs} a basis of GF(2%) over GF(2). For a positive integer
i less than 2, let *~! be expressed as a'~! = 3°%_, b; ;6;, with b; ; € GF(2).
For i = 0, let bg; 2 0for 1 < j < 6. Then = is the following permutation
on {1,2,...,2%}, n(i) £ 1 + 2;=1 b;—1,;2°77, for 1 < i < 2% Consider the
following three bases for codes of length 64: (1) Basis A is the polynomial basis,
{1,a,a%,...,a%}; (2) Basis B is {1,a,a?,a?!,a??,a?®}, which is obtained by
combining a basis of GF(2°) over GF(2?), {1,¢,a?}, and a basis of GF(2?)
over GF(2), {1,a%'}; (3) Basis C is {1,a,a’,a!",a'®,a!®}, which is obtained
by combining a basis of GF(2°) over GF(2?), {1, 2}, and a basis of GF(2?) over
GF(2), {1,a°%a'%}.

Table 11.1 gives the total numbers of addition-equivalent operations re-
quired by the three specific RMLD algorithms, RMLD-(I,V), RMLD-(G,V)

and RMLD-(G,U), for decoding the above code;. For the RMLD-(G,U) algo-
rithm, only the values of the upper bound wfg;f') on the worst-case computa-
tional complexity are given. For comparison pur->ose, the numbers of addition-
equivalent operations required for decoding the above codes with the Viterbi
decoding algorithm based on optimum sectionalization presented in Section 10.2
(Lafourcade and Vardy algorithm) are also included. The column labeled 64-
section gives the numbers of operations required in the conventional Viterbi

decoding based on the bit-level 64-section minimal trellis diagram.

For all EBCH codes, other than the EBCH(6+,51) code, the symbol permu-
tations indicated in Table 11.1 give the smallest o stimum values for each column
among the three symbol permutations given atove. For EBCH(64,51), Basis
B gives the smallest number of operations required in the conventional Viterbi
decoding based on the 64-section trellis diagram ..mong the three permutations,
but Basis A gives the smallest values for the other columns. This shows that a
good bit ordering for the N-section trellis diagram is not always good for the
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proposed RMLD decoding procedures. The last column in Table 11.1 shows the
numbers of addition-equivalent operations given by Lafourcade and Vardy (60].

Table 11.1 shows that the RMLD-(G,U) algorithm is the most efficient
trellis-based decoding algorithm even in terms of the worst case computational
complexity, and the difference between the computational complexities of the
RMLD-(1,V) and RMLD-(G,V) algorithms is very small. All three RMLD
algorithms are more efficient than the Viterbi decoding algorithm based on
optimum sectionalization [60], except only for the RMLD-(I,V) algorithm for
the EBCH(64,45) code. For each algorithm, the number of basic operations
executed by the MakeCBT procedure s relatively small compared with that ex-
ecuted by the CombCBT procedure. Consider the EBCH(64, 45) code. Decod-
ing this code with the RMLD-(L,V) algorithm, the number of basic operations
executed by the MakeCBT-I procedure is 108 out of a total of 893,489 basic
operations. Using the RMLD-(G,U) algorithm, the MakeCBT-G procedure
executes 818 basic operations out of a total 665,713 basic operations.

Let < z,y > denote the MakeCBT-G(z,y) operation, and let - denote the
CombCBT-U operation. The optimum trellis sectionalizations for RM3 6(64 42)
and EBCH(64,24) with Basis B for the complexity measure 1/’mm of the
RMLD-(G,U) algorithm are identical, and represented as

((<0,8>-<8,16>)-(<16,24> < 24,32 >)):
((< 32,40 > - < 40,48 >) - (< 48,56 > - < 56,64 >)).

The optimum trellis sectionalization for RM; 6(64,22) for wf,ff,,”’

(((((<0,8 > <8,16>)-(< 16,24 > < 24,32>))
(< 32,40 > - < 40,48 >))- < 48,56 >)- < 56,61 >)
. < 61,63 >) < 63,64 >,

and that for EBCH(64, 30) with Basis C is
(< 0,16 > - < 16,32 >)- (< 32,48 > - < 48,64 >).

The optimum trellis sectionalization for a code using the algorithm RMLD
is generally not unique. The above optimum trelhs sectnona.lxzatxons are cho-
sen in the following manner: If ¥mia(z,y) = w ) (z,y), then execute the
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Table 11.2. Average numbers of addition-equivalent operations using the RMLD-(G,U)
algorithm for the RM; ¢(64,42) and EBCH(64, 24) codes.

(G.U)
Upper bound ¢ ;. 210,671
on the worst case complexity
RM; o(64,42) | RMLD-(G,U) _1dB } 66,722
The average number of | 4dB | 66,016
operations prf;v’ 7dB | 63,573
10dB 61,724
(e.v)
Upper bound ¢, 171,823
on the worst case complexity
EBCH(64, 24),
CH( ) RMLD-(G,U) 1dB | 70,676
Basis B The average number of | 4dB | 70,420
operations ¢f§;u) 7dB 69,325
10dB 68,158

MakeCBT-G(z,y) procedure. Otherwise, the CombCBT-U(z,y; z} procedure
is executed for an integer z such that Ymin(2,y) = Ymin(z,2) + Yimin(z,y) +
ng)(x,y; z) and |z — (z + y)/2| are the smallest.

Using the trellis sectionalizations which are optimum with respect to the

measure z/?f,fi;"’, we evaluate the average values of 1,;5(0, N), denoted z/):,ﬁ,‘lu),

for the RMLD-(G,U) algorithm which are giver in Table 11.2. It is assumed
that BPSK modulation is used on an AWGN cliannel. The average values at

the SNRs per information bit, 1, 4, 7 and 10 (dB , are listed in the rows labeled

w‘(-nGh.‘U) for RM; ¢(64, 42) and EBCH(64, 24). We see that these values vary only
slightly and are much smaller than the worst-case upper bound JJES,}U)



